K is C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or

L is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or

M is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or

Q is aryl, OH, C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or

 R_{19} , R_{20} and R_{21} are independently C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl or R_{19} and R_{20} taken together with the attached nitrogen atom form a five membered ring;

V is a bond, —CH₂—, —CH₂CH₂—, —CH₂CH₂CH₂—, —O—CH₂—, —OCH₂CH₂— or —OCH₂CH₂CH₂—;

 $\begin{array}{c} R_{12},\,R_{13},\,R_{14},\,R_{15},\,R_{16},\,Rn,\,\text{and}\,\,R_{18},\,\text{are, independently,}\\ \text{H or }C_1,\,C_2,\,C_3,\,C_4,\,C_5,\,\text{or }C_6\text{ alkyl; and} \end{array}$

Z is $(CHR_1)_n$ —C(O)— $NR_2(CHR_3)_m$ —Ar, where Ar is a substituted or unsubstituted aryl or nitrogen-containing heteroaryl group, R_1 , R_2 , and R_3 are independently H or C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl; and

n and m are, independently 0, 1, or 2;

provided that at least one of R_a , R_b , R_c , R_d , R_e , R_4 , R_5 , and R_6 is P.

2. A method of protecting against or treating hearing loss or osteoporosis in a subject comprising administering a compound having the Formula I:

$$\begin{array}{c} R_6 \\ X_5 \\ X_6 \\ X_6 \\ X_C \\$$

or a salt, solvate, hydrate, or prodrug thereof, wherein:

T is absent, $CR_{12}R_{13}$, C(O), O, S, S(O), $S(O)_2$, NR_{14} , $C(R_{15}R_{16})C(R_{17}R_{18})$, CH_2O , or OCH_2 ;

X,, is CZ, CY, N, or N—O;

X_z is CZ, CY, N, or N—O;

at least one of X_{ν} and X_{τ} is CZ;

Y is selected from hydrogen, hydroxyl, halogen, lower (C₁, C₂, C₃, C₄, C₅, or C₆) alkyl, C₁, C₂, C₃, C₄, C₅, or C₆ alkoxy, O-lower (C₁, C₂, C₃, C₄, C₅, or C₆) alkylaryl, and O-benzyl;

 X_a is CR_a or N, or N—O;

 X_b is CR_b , N, or N—O;

 X_c is CR_c or N, or N—O;

 X_d is CR_d or N, or N—O;

X_e is CR_e, N, or N—O;

R_a, R_b, R_c, R_d, R_e, R₄, R₅, and R₆ are, independently, hydrogen, hydroxyl, halogen, P, C₁, C₂, C₃, C₄, C₅, or C₆ alkyl, C₁, C₂, C₃, C₄, C₅, or C₆ alkoxy, O-lower (C₁, C₂, C₃, C₄, C₅, or C₆) alkyl-aryl, O-benzyl, C₁, C₂, C₃, C₄, C₅, or C₆ alkyl-OH, COOH, COO-lower (C₁, C₂, C₃, C₄, C₅, or C₆) alkyl, SO₂H, SO₂-lower (C₁, C₂, C₄, C₅, or C₆) alkyl,

$$V \longrightarrow N - W$$
, $V - N$, $V - N$, or $V - N$, $N - W$,

where W is H, or C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl, C_1 , C_2 , C_3 , C_4 , C_5 , or C_6 alkyl-aryl;

P is SO_3H , OSO_3H , OPO_3H_2 , OPO_3H_2 , NH_2 , NHR_{19} , NHR_2OR_{21} ,

tetrazole, O-lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl-K, O—C(O)-lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl-L, NH-lower (C_1 , C_2 , C_3 , C_4 , C_5 , or C_6) alkyl-M, or O-aryl-Q, further wherein lower alkyl is linear or branched alkyl;

K is C(O)NH₂, COOH, SO₃H, OSO₃H, PO₃H₂, OPO₃H₂, NH₂, NHR₁₉, NR₁₉R₂₀, SO₂R₂₁, glycoside, lower C₁, C₂, C₃, C₄, C₅, C₆ alkoxy, or